



9.3F-20011-A99

Cotes dimensionnelles

Schéma des connexions

Caractéristiques techniques		
Fonction de sortie		contact de travail
Tension de travail y compris ondulation résiduelle	[VDC]	1036
Intensité max. admissible en permanence	[mA]	100
Chute de tension /charge maximale	[V]	≤ 4,6
Courant résiduel	[mA]	≤ 1,0
Courant de charge min.	[mA]	≥ 5,0
Fréquence de commutation	[Hz]	typ.800
Indication de l'état de commutation		LED
Plage de température	[°C]	-25+80
Dérive du point de commutation	[%]	$<\pm$ 10 de s _r
Hystérésis de commutation	[%]	315 de s _r
Ecart de commutation nominal (s _n)	[mm]	2,0, logé dans le métal
Ecart de commutation réel (s _r)	[%]	s _n ± 10
Pression admissible	[bar]	400
Type de protection		IP67
Couple de démarrage	[Nm]	18
Raccordement	[m]	3 câble FLRYY 2x0,5 mm²
Matériau du boîtier		42CrMo4 / 1.2275,surface: Fe/Zn 8 F

Fonctionnement:

Le détecteur de piston est utilisé pour le contrôle de doseurs progressifs du type SSV. Il s'agit d'un détecteur de proximité inductif et résistant à la pression, qui détecte sans contact le mouvement de piston d'un doseur. Il est vissé dans l'alésage de piston du doseur SSV à la place d'une vis de fermeture de piston. Il est très facile d'équiper les doseurs SSV ultérieurement de détecteurs de piston. Utilisé en relation avec un dispositif de commande, le détecteur de piston permet le contrôle d'installations de graissage centralisé.